Scope of Supply			ABM
1 1. 7	Version / Alternative	:	Association of the Beverage Machinery Industr
cess Equipment			
Machines, Equipment and Auxiliaries	Scope of te	mplate Model	Remarks
machines, Equipment and Advinantes	туре	Woder	Remains
Equipment			
	Scope of te		
Machines, Equipment and Auxiliaries	Туре	Model	Remarks
iliary Equipment dedicate	ed to supplie	d Process a	and Line
mary Equipment acaicat	Scope of te		and Emic
Machines, Equipment and Auxiliaries	Туре	Model	Remarks

[&]quot;The information and data provided in this document are non-binding outlines of a suggested best practice by the Association of the Beverage Machinery Industry (ABMI). It is your responsibility to assess whether it is feasible to use this information for your own undertakings. The ABMI will not be held liable for the use of the information or data provided in this document, or for the results of such use. Please see the Terms of Use on www.abm-industry.org for more details."

02 General Conditions and Boundary Conditions for stated values

	 <u></u>	 •••
Project:		
<u> </u>		
Version / Alternative:		

	Comments concerning Operating Conditions
0 11 0 111 (5) (6)	· · · · · · · · · · · · · · · · · · ·
Operating Condition / Plant Situation	Description / Comment
Standard week	Operating conditions are meant to represent a standardized and typical week of production. The goal is to establish a media consumption performance indicator under these conditions.
Standard Week	Equipments or utilities having consumption of less than 1% of the total consumptions, may be neglected as being meaningless.
Nominal Speed	The Calculation for the machine(s) running at nominal speed. It does not include the line efficiency.
Efficiency factor	Efficiency factors and transport losses, i.e. for steam generation are not considered in this calculation
Production format 1	
Production format 2	
Start up	
Changeover	
CIP 1	
CIP 2	
COP	
SIP 1	
SIP 2	
SOP short	
SOP regular	
Shut Down	

	General Comments
Terminology	According to ABMI Glossary
	Removal of macroscopically identifiable contamination such as food residues, deposits, dust etc. proper cleaning eliminates the nutritive medium für microorganisms and is a prerequisite for prop
CIP & COP	disinfection or sterilization
CIP & COP	CIP = automatic cleaning of internal parts of pipes, vessels, etc. by liquid products (e.g. appropriate chemicals)
	COP = cleaning of external surfaces inside an isolator by liquid products (appropriate chemicals)
	Inactivation of all pathogenic and product-damaging microbes to a level that complies with the respective hygiene requirements
SIP & SOP	SIP = automatic sterilization of internal parts of pipes, vessels etc. by appropriate methods
	SOP = automatic sterilization of external surfaces inside an isolator by means of sterilants, disinfectants or other appropriate methods
Net Consumption Values	Consumptions Values in this consideration are supposed to be NET consumption values of the considered equipment. Internal recycling is not stated separately.
Net Consumption values	Media available for other use are stated as negative values. (i.e. Compressed air available to be reinjected into a compressor that is not in the scope of supply).
	In case dedicated machines for energy transformation or media generation (i.e. air compressors, steam generators, cooler,) are in included in the scope of supply, it's consumption of input
Dedicated machines for energy	energy (i.e. electrical power, oil, gas,) will be stated in the net consumption values.
transformation or media generation	In case all auxiliary equipment is part of an (existing) the infrastructure, the consumed medias are stated.
	Please refer also to comments about Air Compressors, Steam Generators and Hot Water.
- i.e. Air Compressors	In case a dedicated air compressor is included in the scope of supply it's electrical consumption will be stated in the net consumption values, whereas the air consumption from the customers
<u>'</u>	Infrastructure will be considered as air consumption.
- i.e. Steam Generator	In case a dedicated steam generator is included in the scope of supply it's consumption of primary energy will be stated in the net consumption values, whereas the steam consumption from the
	customers infrastructure will be considered as steam consumption.
- i.e. Cooler	In case a dedicated Cooler is included in the scope of supply it's electrical consumption will be stated in the net consumption values, whereas i.e. Glycol from the customers infrastructure will not
	considered as Cooling.
	Hot water is used in different places within a plant. Per definition in this sheet the hot water is lost after it's use although it may be recycled within the plant for other purposes (i.e. hot water for CI
Hot water	To calulate the ΔT for the heat consumption for hot water delivered by the operating company the temperature of cold water 1 is used as reference. If the hot water is produced from cold water in
	the plant, the stated hot water consumption is zero. It is calculated as water consumption within cold water 1 and heat consumption (i.e. steam)
Heating water	Heating water is circulating in a closed loop. It is used to transfer heat.

The information and data provided in this document are non-binding outlines of a suggested best practice by the Association of the Beverage Machinery Industry (ABMI). It is your responsibility to assess whether it is feasible to use this information for your own undertakings. The ABMI will not be held liable for the use of the information or data provided in this document, or for the results of such use. Please see the Terms of Use on www.abm-industry.org for more details.

Media_template_27.xls / 02_General_Conditions

•			•		Project:			1												
03 Data	Input ar	nd Calcu	ılation (1/2)																	
JJ Data	pat ai	.a Jaiot	11411011 (1/2)		Version / Alternative			1												
					version/ Alternative	•		1												
								1												
			Dunning tin	ne per week						N	on Pro	ductiv	o Soa	ionco	nor	wook		-	Sum	_
		Duration	Kullilling till	ie pei week			Duration		1	144	OII FIO	uuctiv	e Seq	uence	s her	WEEK			Julii	
		[h per week]					[h per week]	1											0	
		[%]					[%]												0%	Т
		•					•								•			•		
			Produ	ection				Start-	Change-			C	leanin	a			Shut-	No Production		
									over /						SOP	SOP		/ No equipment	A .	
			format 1	format 2				up	Stand by	CIP 1	CIP 2	COP	SIP 1	SIP 2	short	regular	down	running		
		Unit	Value	Value												J				
			1 3.133	10.00			Duration of												1	
	Container size	[litre per container]					Cycle [h]													
	Name :	[container per					Number of												1	
	Nominal speed	hour]					Cycles per Week													
	brief description	Net C	onsumption D	ata per hour		brief description	1				Net Co	nsum	ntion	Data n	er Cv	cle			1	
Media	Media		ata por riour	Media								P	_ u.u p	y				1		
	Temp. Press. [°C] [bar a]	Unit	Value	Value		Temp. Press [°C] [bar a		Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	l .	
team	[Oj [Dai aj	kg/h			Steam	[Oj [bai a	kg per cycle													
iel gas		m³/h			Fuel gas		m³ per cycle													
uel oil eating Water		kg/h MJ/h			Fuel oil Heating Water	-	kg per cycle MJ per cycle												ł	
ot Water 1		m³/h			Hot Water 1		m³ per cycle													
						+ +													1	
ot Water 2		m³/h			Hot Water 2		m³ per cycle													
old water 1		m³/h			Cold water 1	+ +	m³ per cycle												1	
old water 2		m³/h			Cold water 2		m³ per cycle													
old water 3 old water 4		m³/h m³/h			Cold water 3 Cold water 4	.	m³ per cycle												4	
old water 4		m³/h			Cold water 4 Cold water 5	+ +	m³ per cycle m³ per cycle												1	
mpressed Air 1		Nm³/h			Compressed Air 1		Nm³ per cycle													
ompressed Air 2		Nm³/h			Compressed Air 2		Nm³ per cycle												4	
ompressed Air 3 ompressed Air 4		Nm³/h Nm³/h			Compressed Air 3 Compressed Air 4		Nm³ per cycle Nm³ per cycle												ł	
ompressed Air 5		Nm³/h			Compressed Air 5		Nm³ per cycle													
lectrical Power		kW			Electrical Power		kWh per cycle												1	
ooling 1 ooling 2		kW			Cooling 1 Cooling 2	+-+-	kWh per cycle kWh per cycle												ł	
, and the second					, and the second second															
Media	brief description	Unit	Value	Value	Media	brief description	Unit	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value Value		
02		kg/h			CO2		kg per cycle													
2-Gas 2-Liquid	+ + + -	kg/h kg/h			N2-Gas N2-Liquid	+	kg per cycle kg per cycle												ł	
aOH		ka/h			NaOH	 	kg per cycle													
NO3		kg/h kg/h kg/h			HNO3		kg per cycle												1	
paming agent 202		kg/h			Foaming agent H2O2	1	kg per cycle kg per cycle												4	
202 AA		kg/h			PAA	+	kg per cycle												1	
/etting agent		kg/h			Wetting agent		kg per cycle													
																			1	
] [l .												1	

Media_template_27.xls / 03_Data Input and Calculation

03 Data Input and Calculation (2/2)

	Production Data						
format 1	format 2						
		h / week					
		litre / container					
		container / hour					
		SUM:		container / week			
		SUM:		litre / week			
				hectolitre / week			

Project:	
Version / Alternative:	
Totalan, Automative.	\neg

Consumption Data - Summary and Transformation

Media	brief description				total cor	nsumption				per v	week	pe	r container	per litre		
Micula	Temp. [°C]	Press. [bar a]	Sum	Unit	ABMI default factors	adopted factor	Unit	converted value	Unit		sum of converted values	Unit	converted value	Unit	converted value	Unit
Steam				kg / week	2.1 0- 3.05		MJ/kg									
Fuel gas				m³ / week	36 - 41		MJ/m³									
Fuel oil				kg / week	36 - 42		MJ/kg									
Heating Water				MJ / week	1		MJ / MJ									
Hot Water 1				m³ / week		ΔT [°K] *	q [GJ/week] = v [m³/week] * ΔT [°K]		MJ / week	Heat		GJ / week		MJ / container		MJ / hectolitre
Hot Water 2				m³ / week		ΔΤ [°K] *	* 4.2 [kJ/(l°K)] * 0,001 (GJ*l)/(kJ/m³)									
Cold water 1				m³ / week												
Cold water 2				m³ / week	1					Water						
Cold water 3				m³ / week]							m ³ / week		litre / container		litre / litre
Cold water 4				m³ / week]					incl. Hot water						
Cold water 5				m³ / week												
Compressed Air 1				Nm³ / week	0.10 - 0.20		KWh / Nm³					kWh / week		kWh / container		kWh / hectolitre
Compressed Air 2				Nm³ / week	for 8 bar (abs)		KWh / Nm³					KVVII / WEEK		KVVII / COIItailiei		KWII7 Hectolitie
Compressed Air 3				Nm³ / week			KWh / Nm³				3,6	MJ / kWh	3,6	MJ / kWh	3,6	MJ / kWh
Compressed Air 4				Nm³ / week	0.19 - 0.40		KWh / Nm³		kWh / week	Electricity						
Compressed Air 5				Nm³ / week	for 40 bar (abs)		KWh / Nm³		KWIII/ WEEK	Liectricity			MJ / co			
Electrical Power				kWh / week	1		kWh / kWh					MJ / week		MJ / container		MJ / hectolitre
Cooling 1				kWh / week	3.6 - 4.0		kWh / MJ									
Cooling 2				kWh / week	3.6 - 4.0		kWh / MJ									
Media	brief de	escription	Sum	Unit												
CO2				kg / week												
N2-Gas			•	kg / week												
N2-Liquid				kg / week												
NaOH			•	kg / week												
HNO3				kg / week												
Foaming agent			•	kg / week							(no conversio	on)				
H2O2				kg / week												
PAA				kg / week												
Wetting agent				kg / week												

Please fill in Data

The information and data provided in this document are non-binding outlines of a suggested best practice by the Association of the Beverage Machinery Industry (ABMI). It is your responsibility to assess whether it is feasible to use this information for your own undertakings. The ABMI will not be held liable for the use of the information or data provided in this document, or for the results of such use. Please see the Terms of Use on www.abm-industry.org for more details.

Media_template_27.xls / 03_Data Input and Calculation

04 Ecological Sur	nmary		Association of the Beverage Machinery Industry
	Electrical Energy	Water	Heat
Version / Alternative:	[MJ / hectolitre]	[litre / litre]	[MJ / hectolitre]
	The consumption values of other Media will	l be stated separately	

[&]quot;The information and data provided in this document are non-binding outlines of a suggested best practice by the Association of the Beverage Machinery Industry (ABMI). It is your responsibility to assess whether it is feasible to use this information for your own undertakings. The ABMI will not be held liable for the use of the information or data provided in this document, or for the results of such use. Please see the Terms of Use on www.abm-industry.org for more details."